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Atomic valence state energies are analyzed to obtain values of orbital energy 
parameters  that may be used in semiempirical molecular orbital calculations. 
Difficulty in defining the interaction between orbitals with non-integer elec- 
tron populations is systematically avoided by distinguishing between a valence 
state and a "molecular  s tate" of an atom, only the latter state having 
non-integer  spin paired orbital occupancy. Application of the virial theorem 
to the molecular state enables a value for the orbital kinetic energy to be 
obtained f rom the valence state orbital energy parameters  once an arbitrary 
configuration is defined as reference. The orbitals then are eigenfunctions of 
the atomic Fock opera tor  for that reference molecular state and, with their 
energy parameters ,  may be employed as a fixed basis set for molecular orbital 
calculations. 

Key words: Atomic  orbital parameters  - Valence state - kinetic energy - 
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1. Introduction 

Semi-empirical  molecular orbital (MO) theories of the electronic structure of 
molecules and solids have received considerable attention for some time [1, 2]. 
The majori ty utilize the equations of Restricted Har t r ee -Fock  (RHF) theory, 
with two-centre (molecular) integrals being either evaluated directly or related 
to the one-centre  (atomic) integrals in the MO calculation. The atomic integrals 
may be considered as parameters ,  values for which can be related to the electronic 
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structure of the constituent atoms in isolation. Techniques for obtaining requisite 
atomic parameters have been considered by inter alia, Oleari et al. [3], Cusachs 
et al. [4], and Sichel and Whitehead [5], using the concept of the atomic valence 
state (VS). Oleari et al. gave a general analysis of the method and presented 
parameters for the first two rows of the periodic table [3] and also for elements 
of the first and second transition series [6]. Sichel and Whitehead, working with 
the CNDO approximation, obtained parameters for the first four rows of (non- 
transition) elements. Cusachs et al. obtained parameters for the first and second 
row elements. 

In this work we aim to obtain useful parameters for the first four rows of 
(non-transition) elements. Hinze analyzed [7] atomic spectroscopic state energies 
[8] to obtain "experimental" VS promotion energies which in turn may be 
analyzed by the method of Oleari et al. [3] to give a core-orbital interaction 
parameter Ua and inter-orbital interaction parameters ga~,, a and a' denoting 
valence orbitals. The role of the self-interaction (intra-orbital exchange) energy 
has been the source of some difficulties of interpretation when attempting to 
calculate the energies of atomic states with non-integer orbital occupation. Oleari 
et al. proposed [3] that the form (correct for integer occupation number n~) 1 ~na 

(n,  - 1)gaa be the intra-orbital repulsion energy for all na in the range 0 -< n~ -< 2. 
Sichel and Whitehead [5] and Cusachs et al. [4] implicitly used the more realistic 

1 2 (for MO theory) form ~n ag~. We shall distinguish explicitly between an atomic 
VS, with integer orbital occupation numbers and possibly non-zero spin, and a 
zerospin single determinant molecular state (MS) with non-integer occupation 
numbers, when calculating self-interaction energies. 

Sichel and Whitehead [5] calculated self-interaction contributions to atomic Fock 
matrix elements by assuming that all valence electrons were equally distributed 
amongst the available valence orbitals. Such Fock matrix elements turn out to 
be several electron volts smaller in magnitude than the corresponding "experi- 
mental" ionisation energies. Koopmans' theorem [9] predicts that the magnitudes 
of these two quantities are equal, while any correction to Koopmans' theorem 
due to "relaxation" of the final state should physically result in the ionisation 
energy being less than the Koopmans prediction. This deficiency in the Fock 
matrix elements is attributable to the above assumption; using an average orbital 
population to calculate the self-interaction terms in both initial and final states 
[5] fails to account for the considerable change in self-interaction energy con- 
tributed by the orbital from which ionisation occurs. We shall calculate our 
self-interaction terms without this assumption and show that the resulting Fock 
matrix elements are physically consistent with the ionisation energies used to 
determine the atomic parameters in the Fock matrix elements. 

The core-orbital interaction parameter Ua accounts both for the kinetic energy 
of an electron in orbital a and the attractive interaction of that electron with 
the positive atomic core (nucleus plus core electrons). It is desirable to have 
separate "experimental" values for these two components of U, and we give a 
prescription, based on the virial theorem, for obtaining them. 
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2. Molecular State of an Atom 

An atomic valence state has a single Slater determinant many electron wave 
function, defined by assigning valence electrons to the available orbitals with a 
random spin distribution [3]. The VS energy E vs is calculated by spin-averaging 
the exchange interactions between electrons in different orbitals; in contrast the 
exchange interaction between the electrons in a doubly occupied orbital is zero, 
consistent with the Pauli exclusion principle. Therefore  [3] 

E vs C A + E  1 1 = n a U a + ~ .  Z n a n a ' g a a ' + ~ Z  na (na -  1)g,a (1) 
a a a ' # a  a 

where the summations are over the valence orbitals of atom A, each occupied 
by na(=0, 1 or 2) electrons. CA is the "core"  contribution to the total atomic 
energy, independent of the valence electron configuration. The form of E vs may 
either be interpreted using Har t ree-Fock  theory or simply considered as an 
expansion up to second order in the orbital occupation numbers [3]. The last 
term represents the Coulomb repulsion between the spin-paired electrons in 
each doubly occupied orbital. We shall not follow Oleari et al. [3] in retaining 
this term to predict the energy of configurations with non-integer occupation 
numbers. Instead we consider the single determinant RH F  description of a closed 
shell (zero spin) molecule to obtain an expression for this energy. 

The R HF  energy of the molecule is [10] 

z cA + zuo end{ +3 ec E(u lcd)-l(udlcv)]} (2) 
with u, v, c, d atomic orbital basis functions, P the density matrix, H m~ the sum 
of the kinetic energy operator  and the attractive potential of the positive atomic 
cores, and the two-electron interaction terms are given by the integrals 

I I  Cu(1)r162162 d3/'2 (3) (uvlcd) = 

with Cv the wave function of atomic orbital u, etc. In the theoretical limit of 
atom A being removed to a very large distance from the other atoms of the 
molecule, without changing the spin paired non-integer occupation of the orbitals 
of A, the energy of A in this molecular state (MS) may be identified from (2) as 

1 2 E ~  s =Ca +En,HaAa +�89 E nana'gaw+~E n~g~. (4) 
a a a ' ~ a  a 

H A is the sum of the kinetic energy operator  and the core potential of A and 
we have used PaW = naC~aa' to define the non-integer orbital occupation numbers 
n~ because we work with a minimal orthonormal basis. Also, as for the VS [3], 

g a a  = (aa[aa) (5) 

g ~ , =  (aa[a'a')- �89 (for a ' #  a). (6) 

Because the electrons in all orbitals are spin paired the energy of a MS differs 
1 2 1 for ~ Y,a n~(n~ - 1)g~. In other from a VS energy by the substitution of a ~ rt a g a a  
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respects the interactions in the valence state and molecular states are the same; 
if the parameters in (1) are determined by fitting that equation to several known 
valence state energies then we have obtained the interaction terms H a  A = Ua 
and the {gaa'} required for a semiempirical molecular orbital (MO) calculation. 
Associated with EA Ms is the Fock operator  F A, w i t h  diagonal matrix elements 

F a~ = H a  A + ~ 1 na'gaa' + ~nagaa (7) 
a ' ~ a  

which reproduces the valence electron contribution to the total energy i.e. 

EAMS 1 A = C A + g ~  na(Faa + H A ) .  (8) 
a 

Koopmans'  theorem [8] (-Faa = the ionisation energy, provided there is no 
relaxation of the final state electron distribution) should apply to ionisation of 
an electron from an orbital with na = 2. The final state f will have an unpaired 
electron in a and unchanged occupancy of the other orbitals. The total change 
in self-interaction energy is then --gaa and 

~ f  ~ M S  
Ia=I3 'A- -13A tna =2)  

A 
= - H a  a - Y. na'gaa'- gaa = -Faa (na = 2) 

a ' C : a  

consistent with Koopmans'  theorem. 

3. Approximations and Constraints 

Now we consider what approximations are desirable in the analysis of the 
"experimental"  valence state energies. The energies and wave functions obtained 
from a molecular orbital calculation should be invariant with respect to unitary 
transformations of the space fixed axes defining nuclear positions and basis 
orbital orientations. This is equivalent to requiring invariance with respect to 
unitary transformations that mix the basis orbitals within any given atomic 
subshell. Approximating the calculation of two-electron integrals can destroy 
such invariance [I I]; for the p valence subshell, which is relevant for the atoms 
considered in this work, invariance is retained provided 

(xylxy) 1 = d ( x x l x x ) -  (xx]yy)] 

and similarly for the other relatively small but non-zero one centre two-electron 
integrals ( x z l x z )  and (yzlyz). In many semiempirical MO calculations such 
integrals are set to zero, through application of either the Mulliken [12] or Zero  
Differential Overlap (ZDO) [13] approximations. We therefore accept this 
restriction and preserve this invariance by setting gxx = gxy = gpp throughout, 
thereby reducing the number of parameters in E vs from 7 to 6. 

The number of valence state energies available (see Table 2) varies from 7, for 
elements near the end of a row of the periodic table, up to 16 for group IV 
elements. An initial analysis of the VS data with the 6-parameter  formula 
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indicated that, for most elements, an empirical relationship 

2 3 
gsp ----- ~g,~ + 3gpp (9) 

was satisfied to within a fraction of 1 eV. Exceptions were some of the alkali 
and halogen elements for which g,, was, unrealistically, not similar in magnitude 
to gs~ and gpp. This was taken to be a reflection of the known relatively poor  
quality of VS data for these elements [3, 7]. Therefore  the number of independent 
parameters was further reduced to 5 by adopting Eq. (9), so that (with gtp = nx + 
rty q- nz)  

E vs Ca+n~Us+npUp 1 2 2 3 1 = +{~n~ +3nsnp}gs~ +{~n~np +~np(np - 1)}gpp. (10) 

The adoption of Eq. (9) had a negligible effect on the values obtained of the 
remaining 5 independent  parameters for those elements for which Eq. (9) held 
previously, while gs~ and g,p, for the few alkali and halogen elements that had 
been unsatisfactory, now had values compatible with those of their neighbours 
in the periodic table. 

4. Orbital Kinetic Energy 

Haa = Ua is not of immediate use in all semiempirical MO theories. We write 

Haa = Taa--ZAAa (11) 

with T~, a matrix element of the kinetic energy operator,  ZA the net positive 
charge of the core of A and -ZAAa the potential energy of a valence electron 
due to interaction with this core. Off-diagonal matrix elements of H are evaluated 
using empirical/3 0 bonding parameters [1] in most Z D O  theories and then T~a 
a n d  Aa are not required, H ~  being sufficient. If any attempt is to be made to 
calculate two-centre kinetic energy matrix elements explicitly e.g. using the 
Riidenberg approximation [14], then some means is needed of obtaining a value 
of Taa from the experimental parameter  Ua. 

The virial theorem states that for a many-electron system in equilibrium the 
total kinetic energy KE is related to the total potential energy PE by KE = -�89 
Thus for an equilibrium molecular state of atom A 

2 Y~ n~Taa --ZA • naAa +�89 na na,g~,, +~nagaa = 0. (12) 
a a a a 

Our prescription for obtaining Ta~ is to set each term in the summation over a 
in Eq. (12) to zero. Physically this corresponds to assuming that each valence 
electron interacts with the core and other valence electrons through pure 
Coulombic interaction, which is not strictly exact because of penetration of the 
core electron cloud by the valence electrons. This prescription supplies an orbital 
virial relation (OVR) for each valence orbital 

2T,~a-ZaA,~+�89 1 --~n,,g,,, = 0 (13) 
a I 
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which, together with Eq. (11), provides values of Taa and Aa which ensure that 
K E = - � 8 9  for atom A. Naturally for hydrogen and helium, with only a l s  
occupied valence orbital, Eq. (13) is an exact statement of the virial theorem. 

To use the OVR a choice of a reference molecular state is required so that the 
occupation numbers for use in (13) are defined. Applying the virial theorem to 
this reference MS implies that the set of valence orbitals {a} must then be the 
eigenfunctions of the Fock operator  F A for this state, because the virial theorem 
holds for states for which the expectation value of the many-electron Hamiltonian 
is a minimum. We choose the reference MS, for all elements, to be the neutral 
atom with equal occupation of all the valence atomic orbitals. For an sp 3 valence 
shell (with a bar denoting an occupation number for the reference state) 

~s = ~x = ~y = ~z = �88 (14) 

and for hydrogen and helium ~is = ZA.  Writing 

1 - 1 Ga = ~ E na,(1 - ~8.~,)ga~, (15) 
a I 

we obtain T~a = - U~ - Ga (16) 

Z A A ~  = - 2 U ~ - G ~ .  (17) 

Rewriting Eq. (15) for the reference MS we obtain, for hydrogen and helium 

and for the elements with sp 3 valence shells 

Gs = ~ Z a ( g ~ ,  + 6g,  p) 

G o = ~ Z A ( 2 g ~ v  + 5gvv). 

In this way, for each element, values of Ta~, A~ and gaa are obtained from atomic 
spectral data, via a valence state analysis, for valence orbitals that are eigen- 
functions of a well defined reference molecular state of an atom of that element. 

5. Results 

The valence state energies were calculated from Hinze's data on promotion 
energies (to valence states from the ground spectroscopic state X)  for a large 
number of atoms and ions [7]. Energy differences between valence states of 
different ions of the same element have been determined by using the appropriate 
[7] ionisation energies and electron affinities. For illustration we give in Table 
1 available VS energies of a neutral carbon atom and its singly charged ions, 
relative to the ground spectroscopic state of atomic carbon. All energies and 
orbital parameters here are in units of eV. For each element the five orbital 
parameters in Eq. (10) were then calculated using multiple linear regression 
analysis and are presented in Table 2. 

Valence states of the neutral atom and singly charged ions were considered in 
most cases. The exceptions were the inert gas elements, calcium and strontium 
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Table 1. Valence state energies in eV for C ~ C § and C 
calculated from the promotion energies in Ref. [7]. The 
energy zero is defined by the ground spectroscopic state of 
the neutral carbon atom 

ns nx ny nz E vs 

2 1 0 0 11.260 
1 2 0 0 21.521 
0 1 2 0 31.260 
l 1 1 0 19.752 
0 1 1 1 29.471 
2 2 0 0 1.677 
0 2 2 0 19.186 
2 1 1 0 0.325 
1 2 1 0 9.832 
0 1 2 1 17.834 
1 1 1 1 8.479 
2 2 1 0 0.768 
1 2 2 0 9.34O 
0 2 2 1 17.628 
2 1 1 1 -0.438 
1 2 1 1 8.134 
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for  which,  in the  absence  of da t a  for  the  nega t ive  ion, s ta tes  of the  A §247 ion were  
cons ide red .  On ly  nega t ive  ion  va lence  s ta tes  with two s e l ec t rons  were  used  
(except  for  the  a lkal i  e lements )  because  the  p r o m o t i o n  energ ies  to o t h e r  nega t ive  
ion  va lence  s tates ,  e.g. 1220, 0221 and  1211 in T a b l e  1, had  been  o b t a i n e d  by  
e x t r a p o l a t i o n  r a the r  than  d i rec t ly  f rom e x p e r i m e n t  [7]. F o r  the  a lkal i  e l e m e n t s  
all ava i lab le  nega t ive  ion va lence  s ta tes  were  r e q u i r e d  to d e t e r m i n e  gss and  g,p, 
the  va lues  for  which  are  t he r e fo re  less r e l i ab le  than  for  o t h e r  e lements .  F o r  I § 
the  p r o m o t i o n  ene rgy  (X---)p 6) was t a k e n  to be  3 3 . 1 6 5 e V  r a the r  than  
23 .165 e V  [7] to give a va lue  s imi lar  to tha t  for  the  o the r  ha loge n  e l e m e n t s  and  
cons i s ten t  with the  o t h e r  I + p r o m o t i o n  energ ies  of 1 2 . 9 8 4 e V  (X~s2x2y2), 
11.143 e V  (X~s2x2yz)  and  21 .147 e V  (Xosx2yz) .  Othe rwi se  H inz e ' s  d a t a  

were  used  wi thou t  modi f ica t ion .  

T h e  resul ts  a re  g iven to 3 dec ima l  p laces  to fac i l i ta te  checks  on  the  o rb i t a l  
p a r a m e t e r s  in T a b l e  2, which shou ld  r e p r o d u c e  the VS energ ies  used,  wi th in  
the  l imi t a t ion  of the  a p p r o x i m a t i o n  g~x = g~y = g,p. Such checks  suggest  tha t  the  
p a r a m e t e r  va lues  a re  phys ica l ly  signif icant  as far  as the  first dec ima l  place.  
H o w e v e r  it wou ld  p r o b a b l y  be  sens ib le  to ca r ry  t h rough  any M O  ca lcu la t ion  
with  the  va lues  to 3 dec ima l  p laces  to avo id  in t roduc ing  e r ro r s  due  to p r e m a t u r e  
rounding-of f .  

6. Discussion 

In  this w o r k  we have  expl ic i t ly  d i s t ingu ished  b e t w e e n  the  va lence  s ta te  of an 
a tom,  de f ined  by  in teger  occupa t i on  of a tomic  orb i ta l s ,  and  the  m o l e c u l a r  s ta te  
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Table 2. Orbital energy parameters in eV for all the non-transition elements with atomic number 
-~54. gs~ and gpp are obtained from fitting Eq. (10) to the available valence state energies for each 
element, the other parameters being calculated from Us and Up (see Sect. 4). NVS denotes the 
number of valence state energies used in determining the 5 independent parameters in Eq. (10) 

Tss As g~s Tpp A o gpp NVS 

H 10.388 23.988 12.850 - -  - -  - -  3 
He 39.490 46.945 29.820 - -  - -  - -  3 
Li 3.694 9.065 4.570 2.117 5.679 3.139 7 
Be 10.399 13.014 6.254 6.508 9.035 5.714 7 
B 20.931 17.734 9.184 14.215 13.085 8.127 11 
C 33.757 21.536 11.761 23.622 16.116 9.593 13 
N 48.536 24.727 12.095 35.346 19.467 12.190 13 
O 68.737 29.386 17.925 46.062 20.839 11.841 10 
F 83.151 30.290 13.875 65.317 25.529 15.931 7 
Ne 115.409 37.220 16.017 96.378 33.444 22.062 7 

Na 3.531 8.654 4.670 1.784 4.837 2.672 7 
Mg 9.312 11.470 5.968 5.498 7.329 3.954 7 
AI 16.778 14.061 7.289 10.789 9.843 5.898 11 
Si 27.014 17.200 10.905 18.039 11.935 6.116 13 
P 38.894 20.340 13.864 27.921 15.023 8.160 13 
S 42.805 18.372 10.212 32.869 14.798 8.596 10 
C1 54.704 20.092 9.571 45.574 17.681 10.792 7 
Ar 74.798 24.392 12.482 62.614 21.513 13.511 7 

K 2.550 6.520 2.885 1.563 4.659 3.584 7 
Ca 6.309 9.122 5.760 4.058 7.083 7.063 7 
Ga 15.614 13.044 4.959 9.945 9.600 7.024 11 
Ge 30.091 19.323 14.190 19.408 12.586 5.608 13 
As 34.532 18.041 10.581 27.163 14.804 8.800 13 
Se 45.742 19.934 13.579 33.034 14.791 8.003 10 
Br 55.829 20.807 12.718 42.609 16.519 9.571 7 
Kr 68.170 22.112 11.080 55.969 19.223 12.069 7 

Rb 2.835 6.948 4.180 1.786 4.454 1.735 7 
Sr 6.082 8.577 5.340 3.941 6.551 6.046 7 
In 16.876 14.000 6.969 10.290 9.394 5.641 11 
Sn 24.510 15.368 9.593 15.616 10.137 4.774 13 
Sb 36.759 19.275 13.820 25.560 13.731 7.266 13 
Te 45.132 19.765 14.760 31.018 13.805 7.040 10 
I 46.925 17.156 9.622 34.449 13.258 7.572 7 
Xe 57.704 18.701 8.951 48.719 16.713 10.545 7 

w h i c h  h a s  s p i n - p a i r e d ,  g e n e r a l l y  n o n - i n t e g e r ,  o r b i t a l  o c c u p a t i o n .  T h i s  e n a b l e s  

u s  to  t a k e  o v e r  t h e  o r b i t a l  e n e r g y  p a r a m e t e r s  o b t a i n e d  f r o m  v a l e n c e  s t a t e  e n e r g i e s  

i n t o  a M O  c a l c u l a t i o n  w i t h o u t  e n c o u n t e r i n g  c o n c e p t u a l  d i f f i cu l t i es  in  a c c o u n t i n g  

f o r  t h e  s e l f - i n t e r a c t i o n  e n e r g y .  G o p i n a t h a n  a n d  W h i t e h e a d  [15]  h a v e  a l so  d i s -  

c u s s e d  t h e  c a l c u l a t i o n  of  t h e  i n t r a - o r b i t a l  r e p u l s i o n  e n e r g y  a n d  h a v e  p r o p o s e d  

it  b e  c a l c u l a t e d  as ~1 , ,  , L ~ n , , t n a  - 1) + n ' a f , ~ ] g a a ,  w h e r e  na  = n "  + f a  a n d  n "  is t h e  l a r g e s t  
1 2 

i n t e g e r  - n , .  T h i s  d i f f e r s  in  d e t a i l  f r o m  ~na ga~ b u t  a l so  r e m o v e s  t h e  p h y s i c a l l y  
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unacceptable attraction between electrons in the same orbital predicted by 
�89 for O < n a <  1. 

Once a fixed basis set is defined as reference, matrix elements of the Fock 
operator F A (Eq. (7)) are also defined. The reference configuration has been 
chosen realistically as a typical configuration of the atom when in a molecule, 
with electrons shared equally amongst the available valence orbitals. Defining 
the Fock operator  for unoccupied (virtual) valence orbitals poses no problem 
however. If e.g. a 2s 12p 0 reference configuration for lithium were preferred then 
the appropriate values of Gs and Gp could be calculated using Eq. (15). 
Tss, As, Tpp, Ap, would then follow from Eqs. (16) and (17), using Eq. (11) to 
obtain Ua from Table 2. 

Valence orbital interaction parameters have been obtained for hydrogen, helium 
and all the non-transition elements of the first four rows of the periodic table. 
These include values for the inert gases, not to our knowledge previously obtained 
from spectroscopic data. Naturally MO calculations with just a basis of occupied 
orbitals for these atoms are not usually contemplated, but at least the parameters 
can aid our understanding of the isolated inert gas atoms, and help in the study 
of trends in the parameter  values with position in the periodic table. 

In the main these trends conform to established concepts of atomic structure. 
The parameters tend to increase with increasing electronegativity across the 
periodic table and decrease for the heavier  elements in any given group (column). 
gss and g,p are found to exhibit significant differences within these overall trends. 
Values of gs~ here appear to peak near the middle of any given row, while gpp 
increases steadily across each row. It appears that as a valence shell fills the total 
repulsion energy between valence electrons, for given g~a roughly proportional 
to Z2A, increasingly offsets the attraction due to the nucleus and core electrons, 
OC Z A  , thereby inhibiting a steady increase of g~ and gp,. This has two important 
consequences in the analysis of valence state energies: (1) attempts to "smooth"  
a set of g,~ values e.g. to make ga, OCZA, in order to make a set of somewhat 
scattered values more acceptable intuitively, may be ill-founded; (2) the marked 
differences between g~s and gp, for most elements indicate that the assumption 
g,, = g, ,  = gAA can be poor. 

Values of Taa and Aa have been obtained from the parameter  Ua = Ta~ -ZAAa 
by using the OVR discussed in Sect. 4. For hydrogen all the MS parameters are 
less than for the free atom, indicating that the electron density for a hydrogen 
atom in a molecule is described by a more diffuse orbital than the ls  exponential 

1 atomic orbital. This is a consequence of the repulsion between two z-electrons 
in the hydrogen atom MS. The orbital kinetic energies Ta~ increase steadily with 
ZA to offset the increasing attraction due to the core, -ZAAa. Because the g~a 
do not exhibit the same trends the implication is that the radial factors of the 
wave functions of the valence orbitals will change their detailed shape with ZA. 
Such wave functions are being calculated using these orbital parameters and will 
be reported shortly [16]. 



182 D.E. Parry 

T h e  use of the  O V R  to ob t a in  Taa and  Aa e n a b l e d  a r e f e rence  MS to be  de f ined  
u n a m b i g u o u s l y  for  each  e l emen t .  M O  ca lcu la t ions  using these  p a r a m e t e r s  should  
t h e r e f o r e  e m p l o y  the  va lence  o rb i ta l s  of  this r e f e rence  MS in a fixed basis  set. 
I t  is in te res t ing  to  obse rve  tha t  a fo rm of E x t e n d e d  HiJckel  T h e o r y  (EHT)  can 
be  de r ived  f rom the  R H F  equa t ions  if T ~  = - F ~  a ( the vir ial  t h e o r e m  for a 
o n e - e l e c t r o n  a tom)  is a s sumed  [17, 18]. Tha t  e q u a t i o n  c lear ly  v io la tes  the  vir ia l  
t h e o r e m  for  a m a n y - e l e c t r o n  a tom;  howeve r  it  on ly  affects E H T  in the  ca lcu la t ion  
of two-cen t r e  k ine t ic  ene rgy  ma t r ix  e l e m e n t s  which  in p rac t ice  is s u b s u m e d  
into  the  va lue  or  func t iona l  fo rm e m p l o y e d  for  the  W o l f s b e r g - H e l m h o l z  

p a r a m e t e r  K.  

F ina l ly  we should  no te  tha t  Aa in this w o r k  is no t  the  s ame  c o r e - o r b i t a l  in t e rac t ion  
p a r a m e t e r  as is u s e d ' i n  the  analysis  of core  level  chemica l  shifts [19] o b s e r v e d  
in X - r a y  p h o t o e l e c t r o n  spec t ro scopy  (XPS). Tha t  analysis  r equ i res  A a, the  in te rac -  
t ion b e t w e e n  the  core  o rb i t a l  s t ud i ed  and  the va lence  o rb i t a l  a. A~ is r e p r e s e n t a -  
t ive of the  overa l l  i n t e rac t ion  of a wi th  the  nucleus  and  all  core  e lec t rons .  F o r  
the  va lence  p subshel l  p e n e t r a t i o n  of the  core  shou ld  be  smal l  and  then  Ap --- Ap 
(r-1)p. Va lues  of Ap he re  a re  in r e a s o n a b l e  a g r e e m e n t  wi th  t heo re t i ca l  e s t ima tes  
of (r-1)p o b t a i n e d  by  Po l i t ze r  and  D a i k e r  [20] for  s o m e  of the  e l emen t s  we  have  
cons ide red .  A s  it is poss ib le  tha t  the  p subshe l l  p o p u l a t i o n  is m o r e  sensi t ive  to 
chemica l  e n v i r o n m e n t  than  the  s subshel l ,  these  va lues  of Ap m a y  well  a id  the  

analysis  of XPS chemica l  shifts. 
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